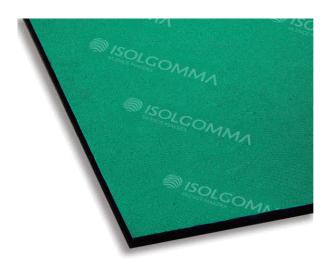
MATRACK 20 AVC 600 VIBRATION CONTROL



VIBRATION INSULATION MAT FOR RAILWAY AND TRAMWAY STRUCTURES

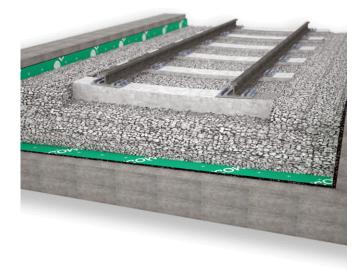
TECHNICAL SPECIFICATION

20 mm thick anti-vibration panels, made of fibres and granules of SBR rubber (Stirene Butadiene Rubber), selected and compacted using a polyurethane glue in a hot process; density 600 kg/m^3 . A non-woven, nonstretch synthetic membrane is applied on one side of panel, for added protection. Panels' dimensions are $2,0m \times 1,2m$.

PROTECTION

The use of our protective mat extends thelife of the railway armament system

FLEXIBILITY


The anti-vibration sistem suits different types of applications

DURABILITY

Resistant to atmospheric agents; the presence of the anti-tear support gives the mat high mechanical performances

■ TO BE USED WITH

Vibrations insulation for Under Ballast Mats (UBM) and Under Slab Mats (USM) solutions.

PHYSICAL CHARACTERISTICS

Nominal thickness	20 mm
Length	2,0 m
Width	1,2 m

Density	600 kg/m³
Quasi-static stiffness Kqs*	0,042 N/mm ³
Reaction to fire	B2

*Kqs (N/mm³) calculated as UNI11059.

The indicated value may change as the applied loads vary

AGEING TESTS - according to UNI 11059

ENVIRONMENTAL CONDITIONS TEST

Dynamic stiffness variation (%) in air at 70 °C \leq 20%

Dynamic stiffness variation (%) in water at $50^{\circ}C \le 15\%$

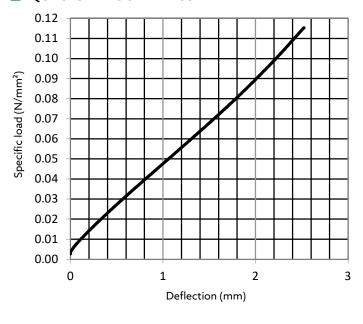
Dynamic stiffness variation (%) in ozone ≤ 20%

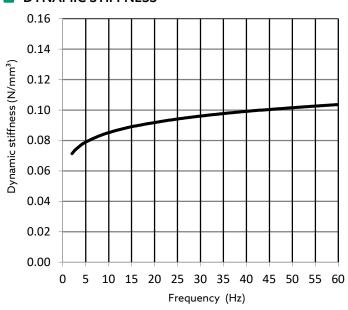
Dynamic stiffness variation (%) in water at -25°C ≤20%

FATIGUE TEST

Quasi-static stiffness variation (%) after $3x10^6$ cycles $\leq 20\%$

Static stiffness variation after 50x106 cycles at 50 Hz under ballast plate (DB-TL 918071/2000) \leq 12%


MATRACK 20 AVC 600 VIBRATION CONTROL

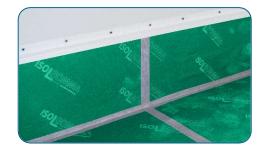


QUASI-STATIC STIFFNESS

DYNAMIC STIFFNESS

UNI 11059 - UNI 10570 $\sigma = 0.12 \text{ N/mm}^2$

LAYING INSTRUCTIONS


Lay the Matrack mats on the pit, without leaving gaps between adjacent mats or along the edges.

2

Seal the edges of the mats with Stik WP tape, taking care of the good adhesion of the tape to the mats. All the lines of junction have to be taped.

Place and fix the vertical mats with large headed screws or with adequate glue. Seal the vertical joints and fix the "Z" profyle on the top border of the vertical mat.

4


Example of a complete lay for a floating slab track.

